SIMULTANE LASER-WÄRMEBEHANDLUNG BEIM LASERSTRAHLSCHWEISSEN

Vorarbeiten zum Projekt HyOp

Aachen, 7. Februar 2023

Martin Dahmen Fraunhofer-Institut für Lasertechnik Fon: 0241 8906 307 martin.dahmen@ilt.fraunhofer.de

Inhalt

- Zielsetzung
- Versuchsaufbau
- Strahlparameter
- Versuchsplan
- Versuchsauswertung
- Ergebnisse
 - Sichtprüfung/Makroschliffe
 - Gefügeanalyse
 - Härtemessung
- Zusammenfassung und weitere Schritte

Zielsetzung

Versuchsziel(e)

- Unterdrückung der Härtespitze ٠ an der Schmelzlinie (neigt zu lokaler Versprödung)
- Verminderung der Härte in der • Schweiße
- Anhebung der Härte in der ٠ Anlasszone
- Ausgeglichenes Härteprofil • quer über die Schweißzone
- Wiederherstellung des ٠ ferritisch-martensitischen Gefüges

Kleinlasthärtemessung an DP1180 (Beispiel)

Versuchsaufbau

Kombinierte Optiken

Versuchsaufbau

Bewegte Optik, ruhendes Werkstück Blech 1.0944 (zwei Chargen) Halbzeug: Abmessungen $250 \times 50 \times 1,5$ bzw. $250 \times 50 \times 0.9 \text{ mm}^3$ 1 Schweißnaht je Blech Abstand a: Schweißfokus bis Anfang WBH-Spot Anstellung WBH-Optik: 20° Anstellung Schweißoptik: 0° Schutzgas Schweißen: Ar 4.6 10 l/min Fokuslage Schweißen: +2 mm Vorschub: 4 m/min

Strahlquellen und Optiken

	Diodenlaser Laserline LDF 12000-100	Scheibenlaser Trumpf Trudisk 12002
Wellenänge λ/nm	960 1080 1030	
Nennleistung P _{Lmax} /kW	12	12
Minimalleistung P _{Lmin} /kW	0	0,240
SPP/mm·mrad	100	8
Strahlformung	Laserline Testoptik	OTS 5
Faserdurchmesser d _F /µm	1000 (rund)	200 (rund)
Kollimator f _K /mm		158
Brennweite	133 mm (eff.)	200
Fokusdurchmesser	29,5 × 7,5 mm ²	506 µm
Arbeitsabstand A/mm	175	430

Strahldiagnose

Grobmessung Messleistung 1200 W Schrittweite 5 mm Messlänge 40 mm • Scharfe Abbildung

Feinmessung Schrittweite 2 mm Messlänge 28 mm

bei 20 – 25 mm

- Scharfe Abbildung bei 12 mm
- Nullpunkt = 10 mm aus Grobmessung
- A = (197 10 12) mm = 175 mm

Werkstoffe

1.0944 d = 0,9 mm

Warmband

1.0944 d = 1,5 mm Kaltbandband, verzinkt

Martensitisch-perlitisch, ferritisch Mittlere Korngröße (F) 6 µm Ausgeprägte Zeilen mit Phasentrennung Ausgeprägte Zeilenstruktur

Martensitisch ferritisch Mittlere Korngröße (F) 4,5 µm Feindisperse Phasenmischung mit gröberen F-Körnern Homogenisiertes Gefüge

Makroschliffe: Schweißnähte ohne Wärmebehandlung

Gefüge ohne Wärmebehandlung

Parameter Vorversuch 1

Strahlquellen:

- LBW: Trudisk 12002 ٠
- LHT: LDF 12000-100 ٠

Parameter:

- $v_s = 4 \text{ m/min}$, $\Delta z = 2 \text{ mm}$, Schutzgas Ar 4.6, 15 l/min, $d_f = 506 \mu \text{m}$
- $A_f \approx 30 \times 7,5 \text{ mm}^2$, Abstand Strahlachsen 45 mm
- Werkstoff: 1.0944, Warmband unbeschichtet, d = 0,9 mm

#	Mat.	d/mm	P _L (LBW)/W	P _L (LHT)/kW	simultan	a/mm	
1	1.0944	0,9	1200	0	1	33	Blech Warmband, unbeschichtet
2	1.0944	0,9	1200	1235	1	33	
3	1.0944	0,9	1200	1800	1	33	
4	1.0944	0,9	1200	2400	1	33	
5	1.0944	0,9	1200	3000	1	33	
6	1.0944	0,9	1200	3600	1	33	
7	1.0944	0,9	1200	3600	0	33	LHT kalte Schweißnaht
8	1.0944	0,9	1200	1200	0	33	LHT kalte Schweißnaht
9	1.0944	0,9	1200	2400	0	33	LHT kalte Schweißnaht

Wärmebehandlung 30 mm nachlaufend, Starttemperatur ca. 800°C

Wärmebehandlung 30 mm nachlaufend, Starttemperatur ca. 800°C

LHT der kalten Schweißnaht, Starttemperatur 20°C

Ergebnisse der Kleinlast-Härtemessung

Schweiße: Schmelzlinie:	Verringerung der Härte um 50 - 80 HV1 Verringerung der Härte um 40 – 70 HV1 bis 2400 W Wiederanstieg ab 3000 W	Verringerung der Härte um 80 – 110 HV1 Verringerung der Härte um 90 – 140 HV1
Anlasszone:	keine Änderung der Härte bis 2400 W, Steigerung ab 3000 W, Verlagerung bei steigender WBH-Leistung	kein Effekt bis 2400 W, Steigerung ab 2400 W, Verlagerung bei 3600 W kleiner als bei in-situ

Gefügeaufnahmen

Zusammenfassung Vorversuch 1

- Blechdicke 0,9 mm
 - Der Effekt der Schweißwärme ist deutlich erkennbar
 - LHT der kalten Naht benötigt bei den eingestellten Parametern ca. 1,2 kW, um die gleiche Breite der wärmebehandelten Zone
 - zu erzeugen
 - Erkennbare Veränderungen im GW ab LHT-Leistung von 2400 W
 - Zonierung der Schweiß-WEZ ab 3000 W LHT-Leistung nicht mehr erkennbar

Parameter Vorversuch 2

Strahlquellen:

- LBW: Trudisk 12002
- LHT: LDF 12000-100

Parameter:

- $v_s = 4$ m/min, $\Delta z = 2$ mm, Schutzgas Ar 4.6, 15 l/min, $d_f = 506$ μ m
- $A_f \approx 30 \times 7,5 \text{ mm}^2$, Abstand Strahlachsen 45 mm
- Blech Kaltband d = 1,5 mm, verzinkt, entschichtet

#	Mat.	d/mm	P _L (LBW)/W	P _L (LHT)/kW	simultan	a/mm	
10	1.0944	1,5	2400	0	1	33	Wurzel zu dünn
11	1.0944	1,5	2530	0	1	33	Wurzel sauber
12	1.0944	1,5	2530	1360	1	33	
13	1.0944	1,5	2530	1860	1	33	
14	1.0944	1,5	2530	2620	1	33	
15	1.0944	1,5	2530	3125	1	33	
16	1.0944	1,5	2530	3780	1	33	
17	1.0944	1,5	2530	4425	1	33	
18	1.0944	1,5	2530	5050	1	33	
19	1.0944	1,5	2530	2510	1	33	Verzinktes Blech
20	1.0944	1,5	2530	3780	1	33	Verzinktes Blech
21	1.0944	1,5	2530	5045	1	33	Verzinktes Blech

Makroschliffe #11 - 18

Seite 19 © Fraunhofer ILT

Vergleichende Härtemessungen

Blech unbeschichtet, gebeizt #10 - 18 420 1360 W #12 0W #10 400 - 2640 W #14 1860 W #13 380 3125 W #15 - 3780 W #16 Härte VHN/HV1 340 300 4425 W #17 5050 W #18 280 260 240 0,0 1.0 2.0 3.0 4.0 5.0 y/mm keine Änderung bis 3800 W Änderung im Streubereich; Rückhärtung in der

Schweiße: Schmelzlinie:

Anlasszone:

Anlasszone bei 5050 W Verminderung der Härte im Streubereich und Verlagerung nach außen mit

steigender WBH-Leistung ab 2500 W

Keine Änderung

Verringerung der Härte 130 HV1 b ei 5000 W

Keine Veränderung der Minimalhärte, flacherer Anstieg auf das Grundwerkstoffniveau

Gefügeaufnahmen

Makroschliffe #19 - 21

LHT 3780 W #20

Verzinktes Blech

- Zinkschicht wird bei hohen LHT-Leistungen partiell angeschmolzen
- Keine Verdampfung der Schicht: Oberflächentemperatur unter 900°C

Seite 22 © Fraunhofer ILT

Temperaturfeldsimulation

Seite 23 © Fraunhofer ILT

ZTU-Diagramm (DP980), Temperaturfeld-Simulation

Experimentell

Simulation (JMatPro)

Quelle: Bräutigam-Matus K. et al., Metals 8, 674 (2018), doi:10.3390/met80

Zusammenfassung Vorversuch 2

- Blechdicke 1,5 mm zeigt weniger Reaktion als Material mit 0,9 mm Stärke
- Unterschiede in der Härte an der Schmelzlinie sind marginal (bis 3 kW WBH wirkungslos)
- Minimalhärte in der Anlasszone nicht beeinflusst
- Verbreiterung der Anlasszone bei WBH-Leistung 3 bis 4 kW
- Bei P_{WBH} = 5000 W wird der interkritische Bereich bei 1 bis 1,5 mm erreicht, Anlasszone wird nach außen verlagert
- Signifikante Verlagerung der Anlasszone bei WBH-Leistungen über 4 kW
- Bei verzinkten Blechen wird die Verdampfungstemperatur von Zn (907°C) nicht erreicht
- Hohe Härte zeigt an, dass bei WBH der interkritische Temperaturbereich erreicht wird Weitere Arbeiten
- Weitere Untersuchungen erforderlich:
 - höhere LDV
 - veränderter Abstand (mit ZTU-Schaubild abgleichen) = kleinere Einstiegstemperatur

Parameter Vorversuch 3 (23-24/11/22)

Strahlquellen:

- LBW: Trudisk 12002
- LHT: LDF 12000-100

Parameter:

- $v_s = 4$ m/min, $\Delta z = 2$ mm, Schutzgas Ar 4.6, 15 l/min, $d_f = 506$ μ m
- α_{LHT} = -15°, $A_f \approx 30 \times 7.5 \text{ mm}^2$, a = 50/70 mm

#	Mat.	d/mm	P _L (LBW)/W	P _L (LHT)/kW	simultan	a/mm	
22	1.0944	1,5	2400	1,87	1	50	
23	1.0944	1,5	2530	2,51	1	50	
24	1.0944	1,5	2530	3,15	1	50	
25	1.0944	1,5	2530	1.22	1	50	Starttemperatur WBH 600°C
26	1.0944	0,9	1200	1,22	1	50	
27	1.0944	0,9	1200	1,87	1	50	
28	1.0944	0,9	1200	2,51	1	50	
29	1.0944	0,9	1200	1,22	1	70	
30	1.0944	0,9	1200	1,8	1	70	Starttemperatur WBH 430°C
31	1.0944	0,9	1200	2,5	1	70	

Parameter Vorversuch 3 (23-24/11/22)

Strahlquellen:

- LBW: Trudisk 12002
- LHT: LDF 12000-100

Parameter:

- $v_s = 4$ m/min, $\Delta z = 2$ mm, Schutzgas Ar 4.6, 15 l/min, $d_f = 506$ μ m
- α_{LHT} = -15°, $A_f \approx 30 \times 7.5 \text{ mm}^2$

#	Mat.	d/mm	P _L (LBW)/W	P _L (LHT)/kW	simultan	a/mm	
32	1.0944	1,5	2530	2,5	1	70	Bis hier.: 1,5 mm mit HCl entzinkt
33	1.0944	1.5	2530	3,1	1	70	Ab hier: 1,5 sandgestrahlt
34	1.0944	1,5	2530	3,18	1	70	
35	1.0944	1,5	2530	1,87	1	70	
36	1.0944	1,5	2530	1,2	1	70	
37	1.0944	1,5	2530	2,5	1	-15	
38	1.0944	1,5	2530	3,13	1	-15	Vorwärmon mit Lasorstrahlung
39	1.0944	1,5	2530	3,87	1	-15	
40	1.0944	1,5	2530	4,4	1	-15	

Wärmebehandlung 50 mm nachlaufend, Starttemperatur ca. 600°C

Härteprüfung #22-25, #32-36

Nachlaufende Wärmebehandlung

1.0944 (DP 980), d = 1,5 mm

#22 – 25, #32 - 36

a = 50 mm, Starttemperatur 600°C, #22-25

Schweiße: Schmelzlinie: Anlasszone:

keine Änderung

Änderung im Streubereich

Verminderung der Härte im Streubereich und Verlagerung nach außen mit steigender WBH-Leistung

a = 70 mm, Starttemperatur 430°C, #32-36

Verringerung der Härte um 45 HV1

Verringerung der Härte um 90 – 140 HV1

Signifikante Verringerung der Härte ab 1870 W, Verbreiterung der Anlasszone schwächer ausgeprägt

Gefügeaufnahmen a = 50 mm

#23

Schweißnahtmitte

Schmelzlinie

Anlasszone

Rückhärtezone

Wärmebehandlung 70 mm nachlaufend, Starttemperatur ca. 430°C

Gefügeaufnahmen im Detail a = 70 mm

Härteprüfung #26-28, #29-31

Nachlaufende Wärmebehandlung

1.0944 (DP 980), d = 0,9 mm

#26 - 28, #29 - 31

Schweiße:

Schmelzlinie: Verringerung der Härte auf 310 – 320 HV0,1 Anlasszone: Verminderung der Härte auf mas. 260 HV0,1, Verlagerung nach außen mit steigender WBH-Leistung

a = 70 mm, Starttemperatur 430°C

Keine Veränderung bei 1200 W, bei höheren Leistungen auf 295 – 310 HV0,1

Verringerung der Härte auf 295 – 300 HV1

Verringerung der Härte ab 1870 W auf max 260 HV0,1; geringere Verbreiterung der Anlasszone

Gefügeaufnahmen a = 50 mm

Gefügeaufnahmen im Detail a = 70 mm

Wärmebehandlung 15 mm vorlaufend

5

Gefügeaufnahmen im Detail

Zusammenfassung Vorversuch 3

Mit steigendem Abstand ist ein stärkere Verminderung der Härte zu beobachten

- Größter Effekt bei a = 70 mm, P_{LLHT} = 1800 2500 W (d = 1,5 mm) und a = 50 , P_{LLHT} = 1200 1500 W (d = 0,9 mm)
- Vorlaufende Wärmebehandlung zeigt im Ätzbild einen stärker ausgeprägten Angriff
 - Keine Änderung der Härte
 - Abkühlverhältnisse werden nicht beeinflusst
- WBH-Strahl verlängern, ggf. profilieren
- Unterschiede in der Wärmebehandlung auf vergrößerte Absorptivität bei sandgestrahlten Blechen zurückzuführen

Gefüge ohne Wärmebehandlung

Härteprüfung – Referenz #11

Feinmessung HV0,1 Schweißnaht in 1.0944, d = 1,5 mm ohne Wärmebehandlung

Schweiße:	415 HV0,1 y ≤ 0,5 mm				
Schmelzlinie:	450 HV0,1 0,6 ≤ y ≤ 0,76 mm				
Anlasszone:	280 – 300 HV0,1	$0,85 \le y \le 1 \text{ mm}$			
Rückhärtezone:	350 HV0,1 1,6 ≤ y ≤ 2,5 mm				
Grundwerkstoff:	330 HV0,1 y ≥ 2,65 mm				

- Ohne Wärmebehandlung
- Stahl arbeitet etwas weicher als das Material in d = 0,9 mm
- Streuung der Härtewerte kleiner
- Ausgeprägte Rückhärtezone

