Compact discharge based EUV source for metrology and inspection

Jochen Vieker, Alexander von Wezyk and Klaus Bergmann

Fraunhofer Institute for Laser Technology ILT, Steinbachstraße 15, 52074 Aachen, Germany www.ilt.fraunhofer.de

FS5420: 20 W EUV Source

Discharge source FS5420 (source, control unit, chillers)

- Max. input power: 15 kW
- Max. pulse energy: 10 J
- Max. repetition rate : 2.5 kHz
- IF-intensity ~40 mW/mm² with matched collector
- Typical plasma length: 3-5 mm
- Typical emission diameter at 13.5 nm: < 300 μm (FWHM)
- Accessible collection angle: > 80°

Source Collector Module with Foiltrap

FS5420 Source Collector Module with integrated foiltrap

Monte Carlo simulation of foiltrap transmission propability of Xe-ions

- Mitigation of fast lons in foiltrap in combination with buffer gas
- IF-intensity including foiltrap and gas transmission: **25 mW/mm²**

Gas Flow / Magnetic Debris-Mitigation

- Accessible collection angle:
 23° (no central stop)
 23°-45° (central stop)
- Magnetic counter pressure (B²/2μ₀) for slow expanding plasma
- Deflection of fast ions in B-Field
- Mitigation of electrode vapor by purge gas flow towards the source
- Up to 200–400 mT in shielded vessel

Magnetic debris-mitigation system with central-stop (top)

B-s for 20° deflection of Xe-ions (left)

Performance at 40 W

EUV inband power in a 30 min run

Typical xenon emission spectrum

Standard deviation (pulse-to-pulse) : σ = 6.8 %

Efficiency optimization

- Extended range of operation for Xe- flow due to advanced triggering
- Higher tolerance towards electrode erosion (tested electrodes had >150 Mshot)
- Higher conversion efficiency (~0.7 %) at lower gas flows achievable

Flow dependence of CE at 6 kW input power

13.5 nm inband performance at 6 kW input:

EUV Power EUV Brigthness
 40 W/(2πsr) 12 W/(mm²sr)

Increasing Lifetime

Classical System:

- Wear of IP (Intermediate Plate) is mainly determining the source performance
- Xe-flow increases with wear of IP
- Higher flow lead to lower CE and reduces the working range
- 100-250 Mshot maintenance interval

New System:

- Advanced triggering allows operation at lower Xe-flow with increase of CE at higher tolerance towards electrode erosion
- Expected electrode lifetimes of >1 Gshot

Acknowledgements

Parts of this work have been supported by:

Supported by:

Federal Ministry
for Economic Affairs
and Energy

on the basis of a decision by the German Bundestag

